Motivated by applications in hyperspectral imaging we investigate methods for approximating a high-dimensional non-negative matrix $\mathbf{\mathit{Y}}$ by a product of two lower-dimensional, non-negative matrices $\mathbf{\mathit{K}}$ and $\mathbf{\mathit{X}}.$ This so-called non-negative matrix factorization is based on defining suitable Tikhonov functionals, which combine a discrepancy measure for $\mathbf{\mathit{Y}}\approx\mathbf{\mathit{KX}}$ with penalty terms for enforcing additional properties of $\mathbf{\mathit{K}}$ and $\mathbf{\mathit{X}}$. The minimization is based on alternating minimization with respect to $\mathbf{\mathit{K}}$ or $\mathbf{\mathit{X}}$, where in each iteration step one replaces the original Tikhonov functional by a locally defined surrogate functional. The choice of surrogate functionals is crucial: It should allow a comparatively simple minimization and simultaneously its first order optimality condition should lead to multiplicative update rules, which automatically preserve non-negativity of the iterates. We review the most standard construction principles for surrogate functionals for Frobenius-norm and Kullback-Leibler discrepancy measures. We extend the known surrogate constructions by a general framework, which allows to add a large variety of penalty terms. The paper finishes by deriving the corresponding alternating minimization schemes explicitely and by applying these methods to MALDI imaging data.