Latent diffusion has shown promising results in image generation and permits efficient sampling. However, this framework might suffer from the problem of posterior collapse when applied to time series. In this paper, we conduct an impact analysis of this problem. With a theoretical insight, we first explain that posterior collapse reduces latent diffusion to a VAE, making it less expressive. Then, we introduce the notion of dependency measures, showing that the latent variable sampled from the diffusion model loses control of the generation process in this situation and that latent diffusion exhibits dependency illusion in the case of shuffled time series. We also analyze the causes of posterior collapse and introduce a new framework based on this analysis, which addresses the problem and supports a more expressive prior distribution. Our experiments on various real-world time-series datasets demonstrate that our new model maintains a stable posterior and outperforms the baselines in time series generation.