This paper proposes a novel, algorithm-independent approach to optimizing belief network inference. rather than designing optimizations on an algorithm by algorithm basis, we argue that one should use an unoptimized algorithm to generate a Q-DAG, a compiled graphical representation of the belief network, and then optimize the Q-DAG and its evaluator instead. We present a set of Q-DAG optimizations that supplant optimizations designed for traditional inference algorithms, including zero compression, network pruning and caching. We show that our Q-DAG optimizations require time linear in the Q-DAG size, and significantly simplify the process of designing algorithms for optimizing belief network inference.