This paper introduces a new Transformer, called MS$^2$Dformer, that can be used as a generalized backbone for multi-modal sequence spammer detection. Spammer detection is a complex multi-modal task, thus the challenges of applying Transformer are two-fold. Firstly, complex multi-modal noisy information about users can interfere with feature mining. Secondly, the long sequence of users' historical behaviors also puts a huge GPU memory pressure on the attention computation. To solve these problems, we first design a user behavior Tokenization algorithm based on the multi-modal variational autoencoder (MVAE). Subsequently, a hierarchical split-window multi-head attention (SW/W-MHA) mechanism is proposed. The split-window strategy transforms the ultra-long sequences hierarchically into a combination of intra-window short-term and inter-window overall attention. Pre-trained on the public datasets, MS$^2$Dformer's performance far exceeds the previous state of the art. The experiments demonstrate MS$^2$Dformer's ability to act as a backbone.