Panoptic and instance segmentation networks are often trained with specialized object detection modules, complex loss functions, and ad-hoc post-processing steps to handle the permutation-invariance of the instance masks. This work builds upon Stable Diffusion and proposes a latent diffusion approach for panoptic segmentation, resulting in a simple architecture which omits these complexities. Our training process consists of two steps: (1) training a shallow autoencoder to project the segmentation masks to latent space; (2) training a diffusion model to allow image-conditioned sampling in latent space. The use of a generative model unlocks the exploration of mask completion or inpainting, which has applications in interactive segmentation. The experimental validation yields promising results for both panoptic segmentation and mask inpainting. While not setting a new state-of-the-art, our model's simplicity, generality, and mask completion capability are desirable properties. View paper on