https://github.com/ur-whitelab/LLMs-in-science.
Large language models (LLMs) are emerging as a powerful tool in chemistry across multiple domains. In chemistry, LLMs are able to accurately predict properties, design new molecules, optimize synthesis pathways, and accelerate drug and material discovery. A core emerging idea is combining LLMs with chemistry-specific tools like synthesis planners and databases, leading to so-called "agents." This review covers LLMs' recent history, current capabilities, design, challenges specific to chemistry, and future directions. Particular attention is given to agents and their emergence as a cross-chemistry paradigm. Agents have proven effective in diverse domains of chemistry, but challenges remain. It is unclear if creating domain-specific versus generalist agents and developing autonomous pipelines versus "co-pilot" systems will accelerate chemistry. An emerging direction is the development of multi-agent systems using a human-in-the-loop approach. Due to the incredibly fast development of this field, a repository has been built to keep track of the latest studies: