Density deconvolution addresses the estimation of the unknown (probability) density function $f$ of a random signal from data that are observed with an independent additive random noise. This is a classical problem in statistics, for which frequentist and Bayesian nonparametric approaches are available to deal with static or batch data. In this paper, we consider the problem of density deconvolution in a streaming or online setting where noisy data arrive progressively, with no predetermined sample size, and we develop a sequential nonparametric approach to estimate $f$. By relying on a quasi-Bayesian sequential approach, often referred to as Newton's algorithm, we obtain estimates of $f$ that are of easy evaluation, computationally efficient, and with a computational cost that remains constant as the amount of data increases, which is critical in the streaming setting. Large sample asymptotic properties of the proposed estimates are studied, yielding provable guarantees with respect to the estimation of $f$ at a point (local) and on an interval (uniform). In particular, we establish local and uniform central limit theorems, providing corresponding asymptotic credible intervals and bands. We validate empirically our methods on synthetic and real data, by considering the common setting of Laplace and Gaussian noise distributions, and make a comparison with respect to the kernel-based approach and a Bayesian nonparametric approach with a Dirichlet process mixture prior.