This paper addresses robust waveform design for multiple-input-multiple-output (MIMO) radar detection. A probabilistic model is proposed to describe the target uncertainty. Considering that waveform design based on maximizing the probability of detection is intractable, the relative entropy between the distributions of the observations under two hypotheses (viz., the target is present/absent) is employed as the design metric. To tackle the resulting non-convex optimization problem, an efficient algorithm based on minorization-maximization (MM) is derived. Numerical results demonstrate that the waveform synthesized by the proposed algorithm is more robust to model mismatches.