Measuring similarity between patents is an essential step to ensure novelty of innovation. However, a large number of methods of measuring the similarity between patents still rely on manual classification of patents by experts. Another body of research has proposed automated methods; nevertheless, most of it solely focuses on the semantic similarity of patents. In order to tackle these limitations, we propose a hybrid method for automatically measuring the similarity between patents, considering both semantic and technological similarities. We measure the semantic similarity based on patent texts using BERT, calculate the technological similarity with IPC codes using Jaccard similarity, and perform hybridization by assigning weights to the two similarity methods. Our evaluation result demonstrates that the proposed method outperforms the baseline that considers the semantic similarity only.