The 0-1 knapsack problem is a well-known combinatorial optimisation problem. Approximation algorithms have been designed for solving it and they return provably good solutions within polynomial time. On the other hand, genetic algorithms are well suited for solving the knapsack problem and they find reasonably good solutions quickly. A naturally arising question is whether genetic algorithms are able to find solutions as good as approximation algorithms do. This paper presents a novel multi-objective optimisation genetic algorithm for solving the 0-1 knapsack problem. Experiment results show that the new algorithm outperforms its rivals, the greedy algorithm, mixed strategy genetic algorithm, and greedy algorithm + mixed strategy genetic algorithm.