Integrated sensing and communication (ISAC) has attracted wide attention as an emerging application scenario for the sixth generation (6G) wireless communication system. In this paper, a novel three-dimensional (3D) non-stationary localization-assisted ISAC geometry-based stochastic model (GBSM) is proposed. The locations of the first-bounce scatterer and last-bounce scatterer in the communication channel can be estimated by the particle filter with the assistance of backscattering sensing. The important channel statistical properties of the proposed channel model are simulated and compared with the ray tracing (RT) results, including the delay spread, azimuth angle of departure/arrival (AAoD/AAoA) spread, and elevation angle of departure/arrival (EAoD/EAoA) spread. The simulation results of the proposed channel model show a good agreement with the RT results, which proves the correctness of the proposed channel model. Utilizing the localization parameters of scatterers, the proposed ISAC channel model can better map the real environment.