Multimodal deep learning methods capture synergistic features from multiple modalities and have the potential to improve accuracy for stress detection compared to unimodal methods. However, this accuracy gain typically comes from high computational cost due to the high-dimensional feature spaces, especially for intermediate fusion. Dimensionality reduction is one way to optimize multimodal learning by simplifying data and making the features more amenable to processing and analysis, thereby reducing computational complexity. This paper introduces an intermediate multimodal fusion network with manifold learning-based dimensionality reduction. The multimodal network generates independent representations from biometric signals and facial landmarks through 1D-CNN and 2D-CNN. Finally, these features are fused and fed to another 1D-CNN layer, followed by a fully connected dense layer. We compared various dimensionality reduction techniques for different variations of unimodal and multimodal networks. We observe that the intermediate-level fusion with the Multi-Dimensional Scaling (MDS) manifold method showed promising results with an accuracy of 96.00\% in a Leave-One-Subject-Out Cross-Validation (LOSO-CV) paradigm over other dimensional reduction methods. MDS had the highest computational cost among manifold learning methods. However, while outperforming other networks, it managed to reduce the computational cost of the proposed networks by 25\% when compared to six well-known conventional feature selection methods used in the preprocessing step.