According to PBS, nearly one-third of Americans lack access to primary care services, and another forty percent delay going to avoid medical costs. As a result, many diseases are left undiagnosed and untreated, even if the disease shows many physical symptoms on the skin. With the rise of AI, self-diagnosis and improved disease recognition have become more promising than ever; in spite of that, existing methods suffer from a lack of large-scale patient databases and outdated methods of study, resulting in studies being limited to only a few diseases or modalities. This study incorporates readily available and easily accessible patient information via image and text for skin disease classification on a new dataset of 26 skin disease types that includes both skin disease images (37K) and associated patient narratives. Using this dataset, baselines for various image models were established that outperform existing methods. Initially, the Resnet-50 model was only able to achieve an accuracy of 70% but, after various optimization techniques, the accuracy was improved to 80%. In addition, this study proposes a novel fine-tuning strategy for sequence classification Large Language Models (LLMs), Chain of Options, which breaks down a complex reasoning task into intermediate steps at training time instead of inference. With Chain of Options and preliminary disease recommendations from the image model, this method achieves state of the art accuracy 91% in diagnosing patient skin disease given just an image of the afflicted area as well as a patient description of the symptoms (such as itchiness or dizziness). Through this research, an earlier diagnosis of skin diseases can occur, and clinicians can work with deep learning models to give a more accurate diagnosis, improving quality of life and saving lives.