While recent retrieval techniques do not limit the number of index terms, out-of-vocabulary (OOV) words are crucial in speech recognition. Aiming at retrieving information with spoken queries, we fill the gap between speech recognition and text retrieval in terms of the vocabulary size. Given a spoken query, we generate a transcription and detect OOV words through speech recognition. We then correspond detected OOV words to terms indexed in a target collection to complete the transcription, and search the collection for documents relevant to the completed transcription. We show the effectiveness of our method by way of experiments.