In most conversations about explanation and AI, the recipient of the explanation (the explainee) is suspiciously absent, despite the problem being ultimately communicative in nature. We pose the problem `explaining AI systems' in terms of a two-player cooperative game in which each agent seeks to maximise our proposed measure of explanatory effectiveness. This measure serves as a foundation for the automated assessment of explanations, in terms of the effects that any given action in the game has on the internal state of the explainee.