The superresolving capacity for number and location recoveries in the super-resolution of positive sources is analyzed in this work. Specifically, we introduce the computational resolution limit for respectively the number detection and location recovery in the one-dimensional super-resolution problem and quantitatively characterize their dependency on the cutoff frequency, signal-to-noise ratio, and the sparsity of the sources. As a direct consequence, we show that targeting at the sparest positive solution in the super-resolution already provides the optimal resolution order. These results are generalized to multi-dimensional spaces. Our estimates indicate that there exist phase transitions in the corresponding reconstructions, which are confirmed by numerical experiments. Our theory fills in an important puzzle towards fully understanding the super-resolution of positive sources.