Conversational Recommender System (CRS) leverages real-time feedback from users to dynamically model their preferences, thereby enhancing the system's ability to provide personalized recommendations and improving the overall user experience. CRS has demonstrated significant promise, prompting researchers to concentrate their efforts on developing user simulators that are both more realistic and trustworthy. The emergence of Large Language Models (LLMs) has marked the onset of a new epoch in computational capabilities, exhibiting human-level intelligence in various tasks. Research efforts have been made to utilize LLMs for building user simulators to evaluate the performance of CRS. Although these efforts showcase innovation, they are accompanied by certain limitations. In this work, we introduce a Controllable, Scalable, and Human-Involved (CSHI) simulator framework that manages the behavior of user simulators across various stages via a plugin manager. CSHI customizes the simulation of user behavior and interactions to provide a more lifelike and convincing user interaction experience. Through experiments and case studies in two conversational recommendation scenarios, we show that our framework can adapt to a variety of conversational recommendation settings and effectively simulate users' personalized preferences. Consequently, our simulator is able to generate feedback that closely mirrors that of real users. This facilitates a reliable assessment of existing CRS studies and promotes the creation of high-quality conversational recommendation datasets.