Graph Neural Networks (GNNs) have gained significant popularity for learning representations of graph-structured data due to their expressive power and scalability. However, despite their success in domains such as social network analysis, recommendation systems, and bioinformatics, GNNs often face challenges related to stability, generalization, and robustness to noise and adversarial attacks. Regularization techniques have shown promise in addressing these challenges by controlling model complexity and improving robustness. Building on recent advancements in contractive GNN architectures, this paper presents a novel method for inducing contractive behavior in any GNN through SVD regularization. By deriving a sufficient condition for contractiveness in the update step and applying constraints on network parameters, we demonstrate the impact of SVD regularization on the Lipschitz constant of GNNs. Our findings highlight the role of SVD regularization in enhancing the stability and generalization of GNNs, contributing to the development of more robust graph-based learning algorithms dynamics.