Identifying objects in given data is a task frequently encountered in many applications. Finding vehicles or persons in video data, tracking seismic waves in geophysical exploration data, or predicting a storm front movement from meteorological measurements are only some of the possible applications. In many cases, the object of interest changes its form or position from one measurement to another. For example, vehicles in a video may change its position or angle to the camera in each frame. Seismic waves can change its arrival time, frequency, or intensity depending on the sensor position. Storm fronts can change its form and position over time. This complicates the identification and tracking as the algorithm needs to deal with the changing object over the given measurements. In a previous work, the authors presented a new algorithm to solve this problem - Object reconstruction using K-approximation (ORKA). The algorithm can solve the problem at hand but suffers from two disadvantages. On the one hand, the reconstructed object movement is bound to a grid that depends on the data resolution. On the other hand, the complexity of the algorithm increases exponentially with the resolution. We overcome both disadvantages by introducing an iterative strategy that uses a resampling method to create multiple resolutions of the data. In each iteration the resolution is increased to reconstruct more details of the object of interest. This way, we can even go beyond the original resolution by artificially upsampling the data. We give error bounds and a complexity analysis of the new method. Furthermore, we analyze its performance in several numerical experiments as well as on real data. We also give a brief introduction on the original ORKA algorithm. Knowledge of the previous work is thus not required.