www.lms.lnt.de/fisheyedataset/.
In video surveillance as well as automotive applications, so-called fisheye cameras are often employed to capture a very wide angle of view. As such cameras depend on projections quite different from the classical perspective projection, the resulting fisheye image and video data correspondingly exhibits non-rectilinear image characteristics. Typical image and video processing algorithms, however, are not designed for these fisheye characteristics. To be able to develop and evaluate algorithms specifically adapted to fisheye images and videos, a corresponding test data set is therefore introduced in this paper. The first of those sequences were generated during the authors' own work on motion estimation for fish-eye videos and further sequences have gradually been added to create a more extensive collection. The data set now comprises synthetically generated fisheye sequences, ranging from simple patterns to more complex scenes, as well as fisheye video sequences captured with an actual fisheye camera. For the synthetic sequences, exact information on the lens employed is available, thus facilitating both verification and evaluation of any adapted algorithms. For the real-world sequences, we provide calibration data as well as the settings used during acquisition. The sequences are freely available via