Recently proposed methods for weakly-supervised semantic segmentation have achieved impressive performance in predicting pixel classes despite being trained with only image labels which lack positional information. Because image annotations are cheaper and quicker to generate, weak supervision is more feasible for training segmentation algorithms in certain datasets. These methods have been predominantly developed on natural scene images and it is unclear whether they can be simply transferred to other domains with different characteristics, such as histopathology and satellite images, and still perform well. Little work has been conducted in the literature on applying weakly-supervised methods to these other image domains; it is unknown how to determine whether certain methods are more suitable for certain datasets, and how to determine the best method to use for a new dataset. This paper evaluates state-of-the-art weakly-supervised semantic segmentation methods on natural scene, histopathology, and satellite image datasets. We also analyze the compatibility of the methods for each dataset and present some principles for applying weakly-supervised semantic segmentation on an unseen image dataset.