Most successful Bayesian network (BN) applications to datehave been built through knowledge elicitation from experts.This is difficult and time consuming, which has lead to recentinterest in automated methods for learning BNs from data. We present a case study in the construction of a BN in anintelligent tutoring application, specifically decimal misconceptions. Wedescribe the BN construction using expert elicitation and then investigate how certainexisting automated knowledge discovery methods might support the BN knowledge engineering process.