Sensing is anticipated to have wider extensions in communication systems with the boom of non-terrestrial networks (NTNs) during the past years. In this paper, we study a bistatic sensing system by maximizing the signal-to-interference-plus-noise ration (SINR) from the target aircraft in the space-air-ground integrated network (SAGIN). We formulate a joint optimization problem for the transmit beamforming of low-earth orbit (LEO) satellite and the receive filtering of ground base station. To tackle this problem, we decompose the original problem into two sub-problems and use the alternating optimization to solve them iteratively. Using techniques of fractional programming and generalized Rayleigh quotient, the closed-form solution for each sub-problem is returned. Simulation results show that the proposed algorithm has good convergence performance.Moreover, the optimization of receive filtering dominates the optimality, especially when the satellite altitude becomes higher, which provides valuable network design insights.