https://vhartman.github.io/mrmg-planning/.
In many industrial robotics applications, multiple robots are working in a shared workspace to complete a set of tasks as quickly as possible. Such settings can be treated as multi-modal multi-robot multi-goal path planning problems, where each robot has to reach an ordered sequence of goals. Existing approaches to this type of problem solve this using prioritization or assume synchronous completion of tasks, and are thus neither optimal nor complete. We formalize this problem as a single path planning problem and introduce a benchmark encompassing a diverse range of problem instances including scenarios with various robots, planning horizons, and collaborative tasks such as handovers. Along with the benchmark, we adapt an RRT* and a PRM* planner to serve as a baseline for the planning problems. Both planners work in the composite space of all robots and introduce the required changes to work in our setting. Unlike existing approaches, our planner and formulation is not restricted to discretized 2D workspaces, supports a changing environment, and works for heterogeneous robot teams over multiple modes with different constraints, and multiple goals. Videos and code for the benchmark and the planners is available at