The existence of unknown interference is a prevalent problem in wireless communication networks. Especially in multi-user multiple-input multiple-output (MIMO) networks, where a large number of user equipments are served on the same time-frequency resources, the outage performance may be dominated by the unknown interference arising from scheduling variations in neighboring cells. In this letter, we propose a Bayesian method for modeling the unknown interference power in the uplink of a cellular network. Numerical results show that our method accurately models the distribution of the unknown interference power and can be effectively used for rate adaptation with guaranteed target outage performance.