The Automated Speech Recognition (ASR) task has been a challenging domain especially for low data scenarios with few audio examples. This is the main problem in training ASR systems on the data from low-resource or marginalized languages. In this paper we present an approach to mitigate the lack of training data by employing Automated Curriculum Learning in combination with an adversarial bandit approach inspired by Reinforcement learning. The goal of the approach is to optimize the training sequence of mini-batches ranked by the level of difficulty and compare the ASR performance metrics against the random training sequence and discrete curriculum. We test our approach on a truly low-resource language and show that the bandit framework has a good improvement over the baseline transfer-learning model.