Currently, mobile and IoT devices are in dire need of a series of methods to enhance 4K images with limited resource expenditure. The absence of large-scale 4K benchmark datasets hampers progress in this area, especially for dehazing. The challenges in building ultra-high-definition (UHD) dehazing datasets are the absence of estimation methods for UHD depth maps, high-quality 4K depth estimation datasets, and migration strategies for UHD haze images from synthetic to real domains. To address these problems, we develop a novel synthetic method to simulate 4K hazy images (including nighttime and daytime scenes) from clear images, which first estimates the scene depth, simulates the light rays and object reflectance, then migrates the synthetic images to real domains by using a GAN, and finally yields the hazy effects on 4K resolution images. We wrap these synthesized images into a benchmark called the 4K-HAZE dataset. Specifically, we design the CS-Mixer (an MLP-based model that integrates \textbf{C}hannel domain and \textbf{S}patial domain) to estimate the depth map of 4K clear images, the GU-Net to migrate a 4K synthetic image to the real hazy domain. The most appealing aspect of our approach (depth estimation and domain migration) is the capability to run a 4K image on a single GPU with 24G RAM in real-time (33fps). Additionally, this work presents an objective assessment of several state-of-the-art single-image dehazing methods that are evaluated using the 4K-HAZE dataset. At the end of the paper, we discuss the limitations of the 4K-HAZE dataset and its social implications.