Abstract:Managing the semantic quality of the categorization in large textual datasets, such as Wikipedia, presents significant challenges in terms of complexity and cost. In this paper, we propose leveraging transformer models to distill semantic information from texts in the Wikipedia dataset and its associated categories into a latent space. We then explore different approaches based on these encodings to assess and enhance the semantic identity of the categories. Our graphical approach is powered by Convex Hull, while we utilize Hierarchical Navigable Small Worlds (HNSWs) for the hierarchical approach. As a solution to the information loss caused by the dimensionality reduction, we modulate the following mathematical solution: an exponential decay function driven by the Euclidean distances between the high-dimensional encodings of the textual categories. This function represents a filter built around a contextual category and retrieves items with a certain Reconsideration Probability (RP). Retrieving high-RP items serves as a tool for database administrators to improve data groupings by providing recommendations and identifying outliers within a contextual framework.
Abstract:The process of transforming a raster image into a vector representation is known as image tracing. This study looks into several processing methods that include high-pass filtering, autoencoding, and vectorization to extract an abstract representation of an image. According to the findings, rebuilding an image with autoencoders, high-pass filtering it, and then vectorizing it can represent the image more abstractly while increasing the effectiveness of the vectorization process.
Abstract:Modern performance on several natural language processing (NLP) tasks has been enhanced thanks to the Transformer-based pre-trained language model BERT. We employ this concept to investigate a local publication database. Research papers are encoded and clustered to form a landscape view of the scientific topics, in which research is active. Authors working on similar topics can be identified by calculating the similarity between their papers. Based on this, we define a similarity metric between authors. Additionally we introduce the concept of self-similarity to indicate the topical variety of authors.