Abstract:We propose a Regularized Adaptive Momentum Dual Averaging (RAMDA) algorithm for training structured neural networks. Similar to existing regularized adaptive methods, the subproblem for computing the update direction of RAMDA involves a nonsmooth regularizer and a diagonal preconditioner, and therefore does not possess a closed-form solution in general. We thus also carefully devise an implementable inexactness condition that retains convergence guarantees similar to the exact versions, and propose a companion efficient solver for the subproblems of both RAMDA and existing methods to make them practically feasible. We leverage the theory of manifold identification in variational analysis to show that, even in the presence of such inexactness, the iterates of RAMDA attain the ideal structure induced by the regularizer at the stationary point of asymptotic convergence. This structure is locally optimal near the point of convergence, so RAMDA is guaranteed to obtain the best structure possible among all methods converging to the same point, making it the first regularized adaptive method outputting models that possess outstanding predictive performance while being (locally) optimally structured. Extensive numerical experiments in large-scale modern computer vision, language modeling, and speech tasks show that the proposed RAMDA is efficient and consistently outperforms state of the art for training structured neural network. Implementation of our algorithm is available at http://www.github.com/ismoptgroup/RAMDA/.
Abstract:This paper proposes an algorithm (RMDA) for training neural networks (NNs) with a regularization term for promoting desired structures. RMDA does not incur computation additional to proximal SGD with momentum, and achieves variance reduction without requiring the objective function to be of the finite-sum form. Through the tool of manifold identification from nonlinear optimization, we prove that after a finite number of iterations, all iterates of RMDA possess a desired structure identical to that induced by the regularizer at the stationary point of asymptotic convergence, even in the presence of engineering tricks like data augmentation and dropout that complicate the training process. Experiments on training NNs with structured sparsity confirm that variance reduction is necessary for such an identification, and show that RMDA thus significantly outperforms existing methods for this task. For unstructured sparsity, RMDA also outperforms a state-of-the-art pruning method, validating the benefits of training structured NNs through regularization.