Abstract:Process mining gains increasing popularity in business process analysis, also in heavy industry. It requires a specific data format called an event log, with the basic structure including a case identifier (case ID), activity (event) name, and timestamp. In the case of industrial processes, data is very often provided by a monitoring system as time series of low level sensor readings. This data cannot be directly used for process mining since there is no explicit marking of activities in the event log, and sometimes, case ID is not provided. We propose a novel rule-based algorithm for identification patterns, based on the identification of significant changes in short-term mean values of selected variable to detect case ID. We present our solution on the mining use case. We compare computed results (identified patterns) with expert labels of the same dataset. Experiments show that the developed algorithm in the most of the cases correctly detects IDs in datasets with and without outliers reaching F1 score values: 96.8% and 97% respectively. We also evaluate our algorithm on dataset from manufacturing domain reaching value 92.6% for F1 score.
Abstract:The count of people suffering from various levels of hearing loss reached 1.57 billion in 2019. This huge number tends to suffer on many personal and professional levels and strictly needs to be included with the rest of society healthily. This paper presents a proof of concept of an automatic sign language recognition system based on data obtained using a wearable device of 3 flex sensors. The system is designed to interpret a selected set of American Sign Language (ASL) dynamic words by collecting data in sequences of the performed signs and using machine learning methods. The built models achieved high-quality performances, such as Random Forest with 99% accuracy, Support Vector Machine (SVM) with 99%, and two K-Nearest Neighbor (KNN) models with 98%. This indicates many possible paths toward the development of a full-scale system.