Abstract:Deep Vein Thrombosis (DVT) is a common yet potentially fatal condition, often leading to critical complications like pulmonary embolism. DVT is commonly diagnosed using Ultrasound (US) imaging, which can be inconsistent due to its high dependence on the operator's skill. Robotic US Systems (RUSs) aim to improve diagnostic test consistency but face challenges with the complex scanning pattern needed for DVT assessment, where precise control over US probe pressure is crucial for indirectly detecting occlusions. This work introduces an imitation learning method, based on Kernelized Movement Primitives (KMP), to standardize DVT US exams by training an autonomous robotic controller using sonographer demonstrations. A new recording device design enhances demonstration ergonomics, integrating with US probes and enabling seamless force and position data recording. KMPs are used to capture scanning skills, linking scan trajectory and force, enabling generalization beyond the demonstrations. Our approach, evaluated on synthetic models and volunteers, shows that the KMP-based RUS can replicate an expert's force control and image quality in DVT US examination. It outperforms previous methods using manually defined force profiles, improving exam standardization and reducing reliance on specialized sonographers.
Abstract:This study presents a conceptual design of laparoscopic forceps whose grasping torque can be directly controlled by the user. By integrating an adjustable constant torque mechanism, the handle opening angle is converted to the grasping torque irrespective of the jaw opening angle. This feature overcomes the limitation regarding of the lack of direct haptic feedback in laparoscopic minimally invasive surgery, preventing damage of delicate tissue during forceps grasping.
Abstract:Deep needle insertion to a target often poses a huge challenge, requiring a combination of specialized skills, assistive technology, and extensive training. One of the frequently encountered medical scenarios demanding such expertise includes the needle insertion into a femoral vessel in the groin. After the access to the femoral vessel, various medical procedures, such as cardiac catheterization and extracorporeal membrane oxygenation (ECMO) can be performed. However, even with the aid of Ultrasound imaging, achieving successful insertion can necessitate multiple attempts due to the complexities of anatomy and tissue deformation. To address this challenge, this paper presents an innovative technology for needle tip real-time tracking, aiming for enhanced needle insertion guidance. Specifically, our approach revolves around the creation of scattering imaging using an optical fiber-equipped needle, and uses Convolutional Neural Network (CNN) based algorithms to enable real-time estimation of the needle tip's position and orientation during insertion procedures. The efficacy of the proposed technology was rigorously evaluated through three experiments. The first two experiments involved rubber and bacon phantoms to simulate groin anatomy. The positional errors averaging 2.3+1.5mm and 2.0+1.2mm, and the orientation errors averaging 0.2+0.11rad and 0.16+0.1rad. Furthermore, the system's capabilities were validated through experiments conducted on fresh porcine phantom mimicking more complex anatomical structures, yielding positional accuracy results of 3.2+3.1mm and orientational accuracy of 0.19+0.1rad. Given the average femoral arterial radius of 4 to 5mm, the proposed system is demonstrated with a great potential for precise needle guidance in femoral artery insertion procedures. In addition, the findings highlight the broader potential applications of the system in the medical field.