Abstract:Interactive medical consultation requires an agent to proactively elicit missing clinical evidence under uncertainty. Yet existing evaluations largely remain static or outcome-centric, neglecting the evidence-gathering process. In this work, we propose an interactive evaluation framework that explicitly models the consultation process using a simulated patient and a \rev{simulated reporter} grounded in atomic evidences. Based on this representation, we introduce Information Coverage Rate (ICR) to quantify how completely an agent uncovers necessary evidence during interaction. To support systematic study, we build EviMed, an evidence-based benchmark spanning diverse conditions from common complaints to rare diseases, and evaluate 10 models with varying reasoning abilities. We find that strong diagnostic reasoning does not guarantee effective information collection, and this insufficiency acts as a primary bottleneck limiting performance in interactive settings. To address this, we propose REFINE, a strategy that leverages diagnostic verification to guide the agent in proactively resolving uncertainties. Extensive experiments demonstrate that REFINE consistently outperforms baselines across diverse datasets and facilitates effective model collaboration, enabling smaller agents to achieve superior performance under strong reasoning supervision. Our code can be found at https://github.com/NanshineLoong/EID-Benchmark .
Abstract:The rapid development of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has exposed vulnerabilities to various adversarial attacks. This paper provides a comprehensive overview of jailbreaking research targeting both LLMs and MLLMs, highlighting recent advancements in evaluation benchmarks, attack techniques and defense strategies. Compared to the more advanced state of unimodal jailbreaking, multimodal domain remains underexplored. We summarize the limitations and potential research directions of multimodal jailbreaking, aiming to inspire future research and further enhance the robustness and security of MLLMs.
Abstract:This paper presents a benchmark self-evolving framework to dynamically evaluate rapidly advancing Large Language Models (LLMs), aiming for a more accurate assessment of their capabilities and limitations. We utilize a multi-agent system to manipulate the context or question of original instances, reframing new evolving instances with high confidence that dynamically extend existing benchmarks. Towards a more scalable, robust and fine-grained evaluation, we implement six reframing operations to construct evolving instances testing LLMs against diverse queries, data noise and probing their problem-solving sub-abilities. With this framework, we extend benchmark datasets of four tasks. Experimental results show a general performance decline in most LLMs against their original results. This decline under our scalable and robust evaluations, alongside our fine-grained evaluation, more accurately reflect models' capabilities. Besides, our framework widens performance discrepancies both between different models and within the same model across various tasks, facilitating more informed model selection for specific tasks (Code and data are available at https://github.com/NanshineLoong/Self-Evolving-Benchmark).