Abstract:Cross-lingual and cross-domain knowledge alignment without sufficient external resources is a fundamental and crucial task for fusing irregular data. As the element-wise fusion process aiming to discover equivalent objects from different knowledge graphs (KGs), entity alignment (EA) has been attracting great interest from industry and academic research recent years. Most of existing EA methods usually explore the correlation between entities and relations through neighbor nodes, structural information and external resources. However, the complex intrinsic interactions among triple elements and role information are rarely modeled in these methods, which may lead to the inadequate illustration for triple. In addition, external resources are usually unavailable in some scenarios especially cross-lingual and cross-domain applications, which reflects the little scalability of these methods. To tackle the above insufficiency, a novel universal EA framework (OTIEA) based on ontology pair and role enhancement mechanism via triple-aware attention is proposed in this paper without introducing external resources. Specifically, an ontology-enhanced triple encoder is designed via mining intrinsic correlations and ontology pair information instead of independent elements. In addition, the EA-oriented representations can be obtained in triple-aware entity decoder by fusing role diversity. Finally, a bidirectional iterative alignment strategy is deployed to expand seed entity pairs. The experimental results on three real-world datasets show that our framework achieves a competitive performance compared with baselines.
Abstract:Entity alignment(EA) is a crucial task for integrating cross-lingual and cross-domain knowledge graphs(KGs), which aims to discover entities referring to the same real-world object from different KGs. Most existing methods generate aligning entity representation by mining the relevance of triple elements via embedding-based methods, paying little attention to triple indivisibility and entity role diversity. In this paper, a novel framework named TTEA -- Type-enhanced Ensemble Triple Representation via Triple-aware Attention for Cross-lingual Entity Alignment is proposed to overcome the above issues considering ensemble triple specificity and entity role features. Specifically, the ensemble triple representation is derived by regarding relation as information carrier between semantic space and type space, and hence the noise influence during spatial transformation and information propagation can be smoothly controlled via specificity-aware triple attention. Moreover, our framework uses triple-ware entity enhancement to model the role diversity of triple elements. Extensive experiments on three real-world cross-lingual datasets demonstrate that our framework outperforms state-of-the-art methods.