Abstract:Spectrograms have been widely used in Convolutional Neural Networks based schemes for acoustic scene classification, such as the STFT spectrogram and the MFCC spectrogram, etc. They have different time-frequency characteristics, contributing to their own advantages and disadvantages in recognizing acoustic scenes. In this letter, a novel multi-spectrogram fusion framework is proposed, making the spectrograms complement each other. In the framework, a single CNN architecture is applied onto multiple spectrograms for feature extraction. The deep features extracted from multiple spectrograms are then fused to discriminate the acoustic scenes. Moreover, motivated by the inter-class similarities in acoustic scene datasets, a label expansion method is further proposed in which super-class labels are constructed upon the original classes. On the help of the expanded labels, the CNN models are transformed into the multitask learning form to improve the acoustic scene classification by appending the auxiliary task of super-class classification. To verify the effectiveness of the proposed methods, intensive experiments have been performed on the DCASE2017 and the LITIS Rouen datasets. Experimental results show that the proposed method can achieve promising accuracies on both datasets. Specifically, accuracies of 0.9744, 0.8865 and 0.7778 are obtained for the LITIS Rouen dataset, the DCASE Development set and Evaluation set respectively.
Abstract:In acoustic scene classification researches, audio segment is usually split into multiple samples. Majority voting is then utilized to ensemble the results of the samples. In this paper, we propose a punishment voting algorithm based on the super categories construction method for acoustic scene classification. Specifically, we propose a DenseNet-like model as the base classifier. The base classifier is trained by the CQT spectrograms generated from the raw audio segments. Taking advantage of the results of the base classifier, we propose a super categories construction method using the spectral clustering. Super classifiers corresponding to the constructed super categories are further trained. Finally, the super classifiers are utilized to enhance the majority voting of the base classifier by punishment voting. Experiments show that the punishment voting obviously improves the performances on both the DCASE2017 Development dataset and the LITIS Rouen dataset.