Abstract:Environmental sound analysis is currently getting more and more attentions. In the domain, acoustic scene classification and acoustic event classification are two closely related tasks. In this letter, a two-stage method is proposed for the above tasks. In the first stage, a mixup based MTL solution is proposed to classify both tasks in one single convolutional neural network. Artificial multi-label samples are used in the training of the MTL model, which are mixed up using existing single-task datasets. The multi-task model obtained can effectively recognize both the acoustic scenes and events. Compared with other methods such as re-annotation or synthesis, the mixup based MTL is low-cost, flexible and effective. In the second stage, the MTL model is modified into a single-task model which is fine-tuned using the original dataset corresponding to the specific task. By controlling the frozen layers carefully, the task-specific high level features are fused and the performance of the single classification task is further improved. The proposed method has confirmed the complementary characteristics of acoustic scene and acoustic event classifications. Finally, enhanced by ensemble learning, a satisfactory accuracy of 84.5 percent on TUT acoustic scene 2017 dataset and an accuracy of 77.5 percent on ESC-50 dataset are achieved respectively.
Abstract:Spectrograms have been widely used in Convolutional Neural Networks based schemes for acoustic scene classification, such as the STFT spectrogram and the MFCC spectrogram, etc. They have different time-frequency characteristics, contributing to their own advantages and disadvantages in recognizing acoustic scenes. In this letter, a novel multi-spectrogram fusion framework is proposed, making the spectrograms complement each other. In the framework, a single CNN architecture is applied onto multiple spectrograms for feature extraction. The deep features extracted from multiple spectrograms are then fused to discriminate the acoustic scenes. Moreover, motivated by the inter-class similarities in acoustic scene datasets, a label expansion method is further proposed in which super-class labels are constructed upon the original classes. On the help of the expanded labels, the CNN models are transformed into the multitask learning form to improve the acoustic scene classification by appending the auxiliary task of super-class classification. To verify the effectiveness of the proposed methods, intensive experiments have been performed on the DCASE2017 and the LITIS Rouen datasets. Experimental results show that the proposed method can achieve promising accuracies on both datasets. Specifically, accuracies of 0.9744, 0.8865 and 0.7778 are obtained for the LITIS Rouen dataset, the DCASE Development set and Evaluation set respectively.