Abstract:Color video snapshot compressive imaging (SCI) employs computational imaging techniques to capture multiple sequential video frames in a single Bayer-patterned measurement. With the increasing popularity of quad-Bayer pattern in mainstream smartphone cameras for capturing high-resolution videos, mobile photography has become more accessible to a wider audience. However, existing color video SCI reconstruction algorithms are designed based on the traditional Bayer pattern. When applied to videos captured by quad-Bayer cameras, these algorithms often result in color distortion and ineffective demosaicing, rendering them impractical for primary equipment. To address this challenge, we propose the MambaSCI method, which leverages the Mamba and UNet architectures for efficient reconstruction of quad-Bayer patterned color video SCI. To the best of our knowledge, our work presents the first algorithm for quad-Bayer patterned SCI reconstruction, and also the initial application of the Mamba model to this task. Specifically, we customize Residual-Mamba-Blocks, which residually connect the Spatial-Temporal Mamba (STMamba), Edge-Detail-Reconstruction (EDR) module, and Channel Attention (CA) module. Respectively, STMamba is used to model long-range spatial-temporal dependencies with linear complexity, EDR is for better edge-detail reconstruction, and CA is used to compensate for the missing channel information interaction in Mamba model. Experiments demonstrate that MambaSCI surpasses state-of-the-art methods with lower computational and memory costs. PyTorch style pseudo-code for the core modules is provided in the supplementary materials.
Abstract:This paper endeavors to advance the precision of snapshot compressive imaging (SCI) reconstruction for multispectral image (MSI). To achieve this, we integrate the advantageous attributes of established SCI techniques and an image generative model, propose a novel structured zero-shot diffusion model, dubbed DiffSCI. DiffSCI leverages the structural insights from the deep prior and optimization-based methodologies, complemented by the generative capabilities offered by the contemporary denoising diffusion model. Specifically, firstly, we employ a pre-trained diffusion model, which has been trained on a substantial corpus of RGB images, as the generative denoiser within the Plug-and-Play framework for the first time. This integration allows for the successful completion of SCI reconstruction, especially in the case that current methods struggle to address effectively. Secondly, we systematically account for spectral band correlations and introduce a robust methodology to mitigate wavelength mismatch, thus enabling seamless adaptation of the RGB diffusion model to MSIs. Thirdly, an accelerated algorithm is implemented to expedite the resolution of the data subproblem. This augmentation not only accelerates the convergence rate but also elevates the quality of the reconstruction process. We present extensive testing to show that DiffSCI exhibits discernible performance enhancements over prevailing self-supervised and zero-shot approaches, surpassing even supervised transformer counterparts across both simulated and real datasets. Our code will be available.