Abstract:In this work, we introduce StageDesigner, the first comprehensive framework for artistic stage generation using large language models combined with layout-controlled diffusion models. Given the professional requirements of stage scenography, StageDesigner simulates the workflows of seasoned artists to generate immersive 3D stage scenes. Specifically, our approach is divided into three primary modules: Script Analysis, which extracts thematic and spatial cues from input scripts; Foreground Generation, which constructs and arranges essential 3D objects; and Background Generation, which produces a harmonious background aligned with the narrative atmosphere and maintains spatial coherence by managing occlusions between foreground and background elements. Furthermore, we introduce the StagePro-V1 dataset, a dedicated dataset with 276 unique stage scenes spanning different historical styles and annotated with scripts, images, and detailed 3D layouts, specifically tailored for this task. Finally, evaluations using both standard and newly proposed metrics, along with extensive user studies, demonstrate the effectiveness of StageDesigner. Project can be found at: https://deadsmither5.github.io/2025/01/03/StageDesigner/
Abstract:Layout Generation aims to synthesize plausible arrangements from given elements. Currently, the predominant methods in layout generation are Generative Adversarial Networks (GANs) and diffusion models, each presenting its own set of challenges. GANs typically struggle with handling discrete data due to their requirement for differentiable generated samples and have historically circumvented the direct generation of discrete labels by treating them as fixed conditions. Conversely, diffusion-based models, despite achieving state-of-the-art performance across several metrics, require extensive sampling steps which lead to significant time costs. To address these limitations, we propose \textbf{DogLayout} (\textbf{D}en\textbf{o}ising Diffusion \textbf{G}AN \textbf{Layout} model), which integrates a diffusion process into GANs to enable the generation of discrete label data and significantly reduce diffusion's sampling time. Experiments demonstrate that DogLayout considerably reduces sampling costs by up to 175 times and cuts overlap from 16.43 to 9.59 compared to existing diffusion models, while also surpassing GAN based and other layout methods. Code is available at https://github.com/deadsmither5/DogLayout.