Abstract:Depth estimation in complex real-world scenarios is a challenging task, especially when relying solely on a single modality such as visible light or thermal infrared (THR) imagery. This paper proposes a novel multimodal depth estimation model, RTFusion, which enhances depth estimation accuracy and robustness by integrating the complementary strengths of RGB and THR data. The RGB modality provides rich texture and color information, while the THR modality captures thermal patterns, ensuring stability under adverse lighting conditions such as extreme illumination. The model incorporates a unique fusion mechanism, EGFusion, consisting of the Mutual Complementary Attention (MCA) module for cross-modal feature alignment and the Edge Saliency Enhancement Module (ESEM) to improve edge detail preservation. Comprehensive experiments on the MS2 and ViViD++ datasets demonstrate that the proposed model consistently produces high-quality depth maps across various challenging environments, including nighttime, rainy, and high-glare conditions. The experimental results highlight the potential of the proposed method in applications requiring reliable depth estimation, such as autonomous driving, robotics, and augmented reality.
Abstract:Multi-view depth estimation has achieved impressive performance over various benchmarks. However, almost all current multi-view systems rely on given ideal camera poses, which are unavailable in many real-world scenarios, such as autonomous driving. In this work, we propose a new robustness benchmark to evaluate the depth estimation system under various noisy pose settings. Surprisingly, we find current multi-view depth estimation methods or single-view and multi-view fusion methods will fail when given noisy pose settings. To tackle this challenge, we propose a two-branch network architecture which fuses the depth estimation results of single-view and multi-view branch. In specific, we introduced mamba to serve as feature extraction backbone and propose an attention-based fusion methods which adaptively select the most robust estimation results between the two branches. Thus, the proposed method can perform well on some challenging scenes including dynamic objects, texture-less regions, etc. Ablation studies prove the effectiveness of the backbone and fusion method, while evaluation experiments on challenging benchmarks (KITTI and DDAD) show that the proposed method achieves a competitive performance compared to the state-of-the-art methods.