Abstract:The neural moving horizon estimator (NMHE) is a relatively new and powerful state estimator that combines the strengths of neural networks (NNs) and model-based state estimation techniques. Various approaches exist for constructing NMHEs, each with its unique advantages and limitations. However, a comprehensive literature review that consolidates existing knowledge, outlines design guidelines and highlights future research directions is currently lacking. This systematic literature review synthesizes the existing knowledge on NMHE, addressing the above knowledge gap. The paper (1) explains the fundamental principles of NMHE, (2) explores different NMHE architectures, discussing the pros and cons of each, (3) investigates the NN architectures used in NMHE, providing insights for future designs, (4) examines the real-time implementability of current approaches, offering recommendations for practical applications, and (5) discusses the current limitations of NMHE approaches and outlines directions for future research. These insights can significantly improve the design and application of NMHE, which is critical for enhancing state estimation in complex systems.
Abstract:This paper introduces a new multi-model predictive control (MMPC) method for quadrotor attitude control with performance nearly on par with nonlinear model predictive control (NMPC) and computational efficiency similar to linear model predictive control (LMPC). Conventional NMPC, while effective, is computationally intensive, especially for attitude control that needs a high refresh rate. Conversely, LMPC offers computational advantages but suffers from poor performance and local stability. Our approach relies on multiple linear models of attitude dynamics, each accompanied by a linear model predictive controller, dynamically switching between them given flight conditions. We leverage gap metric analysis to minimize the number of models required to accurately predict the vehicle behavior in various conditions and incorporate a soft switching mechanism to ensure system stability during controller transitions. Our results show that with just 15 models, the vehicle attitude can be accurately controlled across various set points. Comparative evaluations with existing controllers such as incremental nonlinear dynamic inversion, sliding mode control, LMPC, and NMPC reveal that our approach closely matches the effectiveness of NMPC, outperforming other methods, with a running time comparable to LMPC.