Abstract:Entity resolution (ER) is about identifying and merging records in a database that represent the same real-world entity. Matching dependencies (MDs) have been introduced and investigated as declarative rules that specify ER policies. An ER process induced by MDs over a dirty instance leads to multiple clean instances, in general. General "answer sets programs" have been proposed to specify the MD-based cleaning task and its results. In this work, we extend MDs to "relational MDs", which capture more application semantics, and identify classes of relational MDs for which the general ASP can be automatically rewritten into a stratified Datalog program, with the single clean instance as its standard model.
Abstract:Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called "matching dependencies" (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating four components of ER: (a) Building a classifier for duplicate/non-duplicate record pairs built using machine learning (ML) techniques; (b) Use of MDs for supporting the blocking phase of ML; (c) Record merging on the basis of the classifier results; and (d) The use of the declarative language "LogiQL" -an extended form of Datalog supported by the "LogicBlox" platform- for all activities related to data processing, and the specification and enforcement of MDs.