Abstract:Trading and investing in stocks for some is their full-time career, while for others, it's simply a supplementary income stream. Universal among all investors is the desire to turn a profit. The key to achieving this goal is diversification. Spreading investments across sectors is critical to profitability and maximizing returns. This study aims to gauge the viability of machine learning methods in practicing the principle of diversification to maximize portfolio returns. To test this, the study evaluates the Long-Short Term Memory (LSTM) model across nine different sectors and over 2,200 stocks using Vanguard's sector-based ETFs. The R-squared value across all sectors showed promising results, with an average of 0.8651 and a high of 0.942 for the VNQ ETF. These findings suggest that the LSTM model is a capable and viable model for accurately predicting directional changes across various industry sectors, helping investors diversify and grow their portfolios.
Abstract:Alzheimer's Disease is an incurable cognitive condition that affects thousands of people globally. While some diagnostic methods exist for Alzheimer's Disease, many of these methods cannot detect Alzheimer's in its earlier stages. Recently, researchers have explored the use of Electroencephalogram (EEG) technology for diagnosing Alzheimer's. EEG is a noninvasive method of recording the brain's electrical signals, and EEG data has shown distinct differences between patients with and without Alzheimer's. In the past, Artificial Neural Networks (ANNs) have been used to predict Alzheimer's from EEG data, but these models sometimes produce false positive diagnoses. This study aims to compare losses between ANNs and Kolmogorov-Arnold Networks (KANs) across multiple types of epochs, learning rates, and nodes. The results show that across these different parameters, ANNs are more accurate in predicting Alzheimer's Disease from EEG signals.