Abstract:The responses generated by Large Language Models (LLMs) can include sensitive information from individuals and organizations, leading to potential privacy leakage. This work implements Influence Functions (IFs) to trace privacy leakage back to the training data, thereby mitigating privacy concerns of Language Models (LMs). However, we notice that current IFs struggle to accurately estimate the influence of tokens with large gradient norms, potentially overestimating their influence. When tracing the most influential samples, this leads to frequently tracing back to samples with large gradient norm tokens, overshadowing the actual most influential samples even if their influences are well estimated. To address this issue, we propose Heuristically Adjusted IF (HAIF), which reduces the weight of tokens with large gradient norms, thereby significantly improving the accuracy of tracing the most influential samples. To establish easily obtained groundtruth for tracing privacy leakage, we construct two datasets, PII-E and PII-CR, representing two distinct scenarios: one with identical text in the model outputs and pre-training data, and the other where models leverage their reasoning abilities to generate text divergent from pre-training data. HAIF significantly improves tracing accuracy, enhancing it by 20.96\% to 73.71\% on the PII-E dataset and 3.21\% to 45.93\% on the PII-CR dataset, compared to the best SOTA IFs against various GPT-2 and QWen-1.5 models. HAIF also outperforms SOTA IFs on real-world pretraining data CLUECorpus2020, demonstrating strong robustness regardless prompt and response lengths.