Abstract:RF fingerprinting is emerging as a physical layer security scheme to identify illegitimate and/or unauthorized emitters sharing the RF spectrum. However, due to the lack of publicly accessible real-world datasets, most research focuses on generating synthetic waveforms with software-defined radios (SDRs) which are not suited for practical deployment settings. On other hand, the limited datasets that are available focus only on chipsets that generate only one kind of waveform. Commercial off-the-shelf (COTS) combo chipsets that support two wireless standards (for example WiFi and Bluetooth) over a shared dual-band antenna such as those found in laptops, adapters, wireless chargers, Raspberry Pis, among others are becoming ubiquitous in the IoT realm. Hence, to keep up with the modern IoT environment, there is a pressing need for real-world open datasets capturing emissions from these combo chipsets transmitting heterogeneous communication protocols. To this end, we capture the first known emissions from the COTS IoT chipsets transmitting WiFi and Bluetooth under two different time frames. The different time frames are essential to rigorously evaluate the generalization capability of the models. To ensure widespread use, each capture within the comprehensive 72 GB dataset is long enough (40 MSamples) to support diverse input tensor lengths and formats. Finally, the dataset also comprises emissions at varying signal powers to account for the feeble to high signal strength emissions as encountered in a real-world setting.
Abstract:We tackle the problem of joint frequency and power allocation while emphasizing the generalization capability of a deep reinforcement learning model. Most of the existing methods solve reinforcement learning-based wireless problems for a specific pre-determined wireless network scenario. The performance of a trained agent tends to be very specific to the network and deteriorates when used in a different network operating scenario (e.g., different in size, neighborhood, and mobility, among others). We demonstrate our approach to enhance training to enable a higher generalization capability during inference of the deployed model in a distributed multi-agent setting in a hostile jamming environment. With all these, we show the improved training and inference performance of the proposed methods when tested on previously unseen simulated wireless networks of different sizes and architectures. More importantly, to prove practical impact, the end-to-end solution was implemented on the embedded software-defined radio and validated using over-the-air evaluation.
Abstract:A novel cross-domain attentional multi-task architecture - xDom - for robust real-world wireless radio frequency (RF) fingerprinting is presented in this work. To the best of our knowledge, this is the first time such comprehensive attention mechanism is applied to solve RF fingerprinting problem. In this paper, we resort to real-world IoT WiFi and Bluetooth (BT) emissions (instead of synthetic waveform generation) in a rich multipath and unavoidable interference environment in an indoor experimental testbed. We show the impact of the time-frame of capture by including waveforms collected over a span of months and demonstrate the same time-frame and multiple time-frame fingerprinting evaluations. The effectiveness of resorting to a multi-task architecture is also experimentally proven by conducting single-task and multi-task model analyses. Finally, we demonstrate the significant gain in performance achieved with the proposed xDom architecture by benchmarking against a well-known state-of-the-art model for fingerprinting. Specifically, we report performance improvements by up to 59.3% and 4.91x under single-task WiFi and BT fingerprinting respectively, and up to 50.5% increase in fingerprinting accuracy under the multi-task setting.