Abstract:Recent research shows large-scale AI-centric data centers could experience rapid fluctuations in power demand due to varying computation loads, such as sudden spikes from inference or interruption of training large language models (LLMs). As a consequence, such huge and fluctuating power demand pose significant challenges to both data center and power utility operation. Accurate short-term power forecasting allows data centers and utilities to dynamically allocate resources and power large computing clusters as required. However, due to the complex data center power usage patterns and the black-box nature of the underlying AI algorithms running in data centers, explicit modeling of AI-data center is quite challenging. Alternatively, to deal with this emerging load forecasting problem, we propose a data-driven workflow to model and predict the short-term electricity load in an AI-data center, and such workflow is compatible with learning-based algorithms such as LSTM, GRU, 1D-CNN. We validate our framework, which achieves decent accuracy on data center GPU short-term power consumption. This provides opportunity for improved power management and sustainable data center operations.