Abstract:This paper presents a theoretical framework unifying AIXI -- a model of universal AI -- with variational empowerment as an intrinsic drive for exploration. We build on the existing framework of Self-AIXI -- a universal learning agent that predicts its own actions -- by showing how one of its established terms can be interpreted as a variational empowerment objective. We further demonstrate that universal AI's planning process can be cast as minimizing expected variational free energy (the core principle of active Inference), thereby revealing how universal AI agents inherently balance goal-directed behavior with uncertainty reduction curiosity). Moreover, we argue that power-seeking tendencies of universal AI agents can be explained not only as an instrumental strategy to secure future reward, but also as a direct consequence of empowerment maximization -- i.e.\ the agent's intrinsic drive to maintain or expand its own controllability in uncertain environments. Our main contribution is to show how these intrinsic motivations (empowerment, curiosity) systematically lead universal AI agents to seek and sustain high-optionality states. We prove that Self-AIXI asymptotically converges to the same performance as AIXI under suitable conditions, and highlight that its power-seeking behavior emerges naturally from both reward maximization and curiosity-driven exploration. Since AIXI can be view as a Bayes-optimal mathematical formulation for Artificial General Intelligence (AGI), our result can be useful for further discussion on AI safety and the controllability of AGI.
Abstract:The ability to learn new concepts with small amounts of data is a crucial aspect of intelligence that has proven challenging for deep learning methods. Meta-learning for few-shot learning offers a potential solution to this problem: by learning to learn across data from many previous tasks, few-shot learning algorithms can discover the structure among tasks to enable fast learning of new tasks. However, a critical challenge in few-shot learning is task ambiguity: even when a powerful prior can be meta-learned from a large number of prior tasks, a small dataset for a new task can simply be very ambiguous to acquire a single model for that task. The Bayesian meta-learning models can naturally resolve this problem by putting a sophisticated prior distribution and let the posterior well regularized through Bayesian decision theory. However, currently known Bayesian meta-learning procedures such as VERSA suffer from the so-called {\it information preference problem}, that is, the posterior distribution is degenerated to one point and is far from the exact one. To address this challenge, we design a novel meta-regularization objective using {\it cyclical annealing schedule} and {\it maximum mean discrepancy} (MMD) criterion. The cyclical annealing schedule is quite effective at avoiding such degenerate solutions. This procedure includes a difficult KL-divergence estimation, but we resolve the issue by employing MMD instead of KL-divergence. The experimental results show that our approach substantially outperforms standard meta-learning algorithms.