Abstract:Although many studies suggest high performance hand detection methods, those methods are likely to be overfitting. Fortunately, the Convolution Neural Network (CNN) based approach provides a better way that is less sensitive to translation and hand poses. However the CNN approach is complex and can increase computational time, which at the end reduce its effectiveness on a system where the speed is essential.In this study we propose a shallow CNN network which is fast, and insensitive to translation and hand poses. It is tested on two different domains of hand datasets, and performs in relatively comparable performance and faster than the other state-of-the-art hand CNN-based hand detection method. Our evaluation shows that the proposed shallow CNN network performs at 93.9% accuracy and reaches much faster speed than its competitors.
Abstract:This paper describes a Naive-Bayesian predictive model for 2016 U.S. Presidential Election based on Twitter data. We use 33,708 tweets gathered since December 16, 2015 until February 29, 2016. We introduce a simpler data preprocessing method to label the data and train the model. The model achieves 95.8% accuracy on 10-fold cross validation and predicts Ted Cruz and Bernie Sanders as Republican and Democratic nominee respectively. It achieves a comparable result to those in its competitor methods.
Abstract:We propose an improved eye center localization method based on the Hough transform, called Circle-based Eye Center Localization (CECL) that is simple, robust, and achieves accuracy on a par with typically more complex state-of-the-art methods. The CECL method relies on color and shape cues that distinguish the iris from other facial structures. The accuracy of the CECL method is demonstrated through a comparison with 15 state-of-the-art eye center localization methods against five error thresholds, as reported in the literature. The CECL method achieved an accuracy of 80.8% to 99.4% and ranked first for 2 of the 5 thresholds. It is concluded that the CECL method offers an attractive alternative to existing methods for automatic eye center localization.
Abstract:Text mining can be applied to many fields. One of the application is using text mining in digital newspaper to do politic sentiment analysis. In this paper sentiment analysis is applied to get information from digital news articles about its positive or negative sentiment regarding particular politician. This paper suggests a simple model to analyze digital newspaper sentiment polarity using naive Bayes classifier method. The model uses a set of initial data to begin with which will be updated when new information appears. The model showed promising result when tested and can be implemented to some other sentiment analysis problems.
Abstract:Warehouse is one of the important aspects of a company. Therefore, it is necessary to improve Warehouse Management System (WMS) to have a simple function that can determine the layout of the storage goods. In this paper we propose an improved warehouse layout method based on ant colony algorithm and backtracking algorithm. The method works on two steps. First, it generates a solutions parameter tree from backtracking algorithm. Then second, it deducts the solutions parameter by using a combination of ant colony algorithm and backtracking algorithm. This method was tested by measuring the time needed to build the tree and to fill up the space using two scenarios. The method needs 0.294 to 33.15 seconds to construct the tree and 3.23 seconds (best case) to 61.41 minutes (worst case) to fill up the warehouse. This method is proved to be an attractive alternative solution for warehouse layout system.