Abstract:The surging demand for batteries requires advanced battery management systems, where battery capacity modelling is a key functionality. In this paper, we aim to achieve accurate battery capacity prediction by learning from historical measurements of battery dynamics. We propose GiNet, a gated recurrent units enhanced Informer network, for predicting battery's capacity. The novelty and competitiveness of GiNet lies in its capability of capturing sequential and contextual information from raw battery data and reflecting the battery's complex behaviors with both temporal dynamics and long-term dependencies. We conducted an experimental study based on a publicly available dataset to showcase GiNet's strength of gaining a holistic understanding of battery behavior and predicting battery capacity accurately. GiNet achieves 0.11 mean absolute error for predicting the battery capacity in a sequence of future time slots without knowing the historical battery capacity. It also outperforms the latest algorithms significantly with 27% error reduction on average compared to Informer. The promising results highlight the importance of customized and optimized integration of algorithm and battery knowledge and shed light on other industry applications as well.
Abstract:DNA methylation is a crucial regulator of gene transcription and has been linked to various diseases, including autoimmune diseases and cancers. However, diagnostics based on DNA methylation face challenges due to large feature sets and small sample sizes, resulting in overfitting and suboptimal performance. To address these issues, we propose MIRACLE, a novel interpretable neural network that leverages autoencoder-based multi-task learning to integrate multiple datasets and jointly identify common patterns in DNA methylation. MIRACLE's architecture reflects the relationships between methylation sites, genes, and pathways, ensuring biological interpretability and meaningfulness. The network comprises an encoder and a decoder, with a bottleneck layer representing pathway information as the basic unit of heredity. Customized defined MaskedLinear Layer is constrained by site-gene-pathway graph adjacency matrix information, which provides explainability and expresses the site-gene-pathway hierarchical structure explicitly. And from the embedding, there are different multi-task classifiers to predict diseases. Tested on six datasets, including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease, psoriasis, and type 1 diabetes, MIRACLE demonstrates robust performance in identifying common functions of DNA methylation across different phenotypes, with higher accuracy in prediction dieseases than baseline methods. By incorporating biological prior knowledge, MIRACLE offers a meaningful and interpretable framework for DNA methylation data analysis in the context of autoimmune diseases.