Abstract:Deployable polyhedrons can transform between Platonic and Archimedean polyhedrons to meet the demands of various engineering applications. However, the existing design solutions are often with multiple degrees of freedom and complicated mechanism links and joints, which greatly limited their potential in practice. Combining the fundamentals of solid geometry and mechanism kinematics, this paper proposes a family of kirigami Archimedean polyhedrons based on the N-fold-symmetric loops of spatial 7R linkage, which perform one-DOF radial transformation following tetrahedral, octahedral, or icosahedral symmetry. Moreover, in each symmetric polyhedral group, three different transforming paths can be achieved from one identical deployed configuration. We also demonstrated that such design strategy can be readily applied to polyhedral tessellation. This work provides a family of rich solutions for deployable polyhedrons to facilitate their applications in aerospace exploration, architecture, metamaterials and so on.
Abstract:Deployable polyhedral mechanisms (DPMs) have witnessed flourishing growth in recent years because of their potential applications in robotics, space exploration, structure engineering, etc. This paper firstly presents the construction, mobility and kinematics of a family of Sarrus-inspired deployable polyhedral mechanisms. By carrying out expansion operation and implanting Sarrus linkages along the straight-line motion paths, deployable tetrahedral, cubic and dodecahedral mechanisms are identified and constructed following tetrahedral, octahedral and icosahedral symmetry, respectively. Three paired transformations with synchronized radial motion between Platonic and Archimedean polyhedrons are revealed, and their significant symmetric properties are perfectly remained in each work configuration. Subsequently, with assistant of equivalent prismatic joints, the equivalent analysis strategy for mobility of multiloop polyhedral mechanisms is proposed to significantly simplify the calculation process. This paper hence presents the construction method and equivalent analysis of the Sarrus-inspired DPMs that are not only valuable in theoretical investigation, but also have great potential in practical applications such as mechanical metamaterials, deployable architectures and space exploration.