Abstract:Generative Adversarial Networks (GANs) for producing realistic signals, have substantially improved fault diagnosis algorithms in various Internet of Things (IoT) systems. However, challenges such as training instability and dynamical inaccuracy limit their utility in high-speed rail (HSR) bogie fault diagnosis. To address these challenges, we introduce the Pulse Voltage-Guided Conditional Diffusion Model (VGCDM). Unlike traditional implicit GANs, VGCDM adopts a sequential U-Net architecture, facilitating multi-phase denoising diffusion for generation, which bolsters training stability and mitigate convergence issues. VGCDM also incorporates control pulse voltage by cross-attention mechanism to ensure the alignment of vibration with voltage signals, enhancing the Conditional Diffusion Model's progressive controlablity. Consequently, solely straightforward sampling of control voltages, ensuring the efficient transformation from Gaussian Noise to vibration signals. This adaptability remains robust even in scenarios with time-varying speeds. To validate the effectiveness, we conducted two case studies using SQ dataset and high-simulation HSR bogie dataset. The results of our experiments unequivocally confirm that VGCDM outperforms other generative models, achieving the best RSME, PSNR, and FSCS, showing its superiority in conditional HSR bogie vibration signal generation. For access, our code is available at https://github.com/xuanliu2000/VGCDM.