Abstract:This paper presents a novel physics-informed diffusion model for generating synthetic net load data, addressing the challenges of data scarcity and privacy concerns. The proposed framework embeds physical models within denoising networks, offering a versatile approach that can be readily generalized to unforeseen scenarios. A conditional denoising neural network is designed to jointly train the parameters of the transition kernel of the diffusion model and the parameters of the physics-informed function. Utilizing the real-world smart meter data from Pecan Street, we validate the proposed method and conduct a thorough numerical study comparing its performance with state-of-the-art generative models, including generative adversarial networks, variational autoencoders, normalizing flows, and a well calibrated baseline diffusion model. A comprehensive set of evaluation metrics is used to assess the accuracy and diversity of the generated synthetic net load data. The numerical study results demonstrate that the proposed physics-informed diffusion model outperforms state-of-the-art models across all quantitative metrics, yielding at least 20% improvement.
Abstract:The global deployment of the phasor measurement units (PMUs) enables real-time monitoring of the power system, which has stimulated considerable research into machine learning-based models for event detection and classification. However, recent studies reveal that machine learning-based methods are vulnerable to adversarial attacks, which can fool the event classifiers by adding small perturbations to the raw PMU data. To mitigate the threats posed by adversarial attacks, research on defense strategies is urgently needed. This paper proposes an effective adversarial purification method based on the diffusion model to counter adversarial attacks on the machine learning-based power system event classifier. The proposed method includes two steps: injecting noise into the PMU data; and utilizing a pre-trained neural network to eliminate the added noise while simultaneously removing perturbations introduced by the adversarial attacks. The proposed adversarial purification method significantly increases the accuracy of the event classifier under adversarial attacks while satisfying the requirements of real-time operations. In addition, the theoretical analysis reveals that the proposed diffusion model-based adversarial purification method decreases the distance between the original and compromised PMU data, which reduces the impacts of adversarial attacks. The empirical results on a large-scale real-world PMU dataset validate the effectiveness and computational efficiency of the proposed adversarial purification method.